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Abstract— We study the hierarchical knowledge transfer
problem using a cloth-folding task, wherein the agent is first
given a set of human demonstrations in the virtual world using
an Oculus Headset, and later transferred and validated on a
physical Baxter robot. We argue that such an intricate robot
task transfer across different embodiments is only realizable
if an abstract and hierarchical knowledge representation is
formed to facilitate the process, in contrast to prior literature
of sim2real in a reinforcement learning setting. Specifically,
the knowledge in both the virtual and physical worlds are
measured by information entropy built on top of a graph-based
representation, so that the problem of task transfer becomes
the minimization of the relative entropy between the two
worlds. An And-Or-Graph (AOG) is introduced to represent the
knowledge, induced from the human demonstrations performed
across six virtual scenarios inside the Virtual Reality (VR).
During the transfer, the success of a physical Baxter robot
platform across all six tasks demonstrates the efficacy of the
graph-based hierarchical knowledge representation.

I. INTRODUCTION

Robots would be able to rapidly acquire skills for various
tasks if a robot could extract and learn the abstract knowledge
merely from human demonstrations. Despite virtual training
in various virtual environments [1], [2], [3], [4], [5], [6], [7]
is readily available in the past few years, there still exists
two unsolved challenges. First, since the ground-truth data
with its hierarchy is fully accessible in virtual environments,
how can we take such an advantage by utilizing the structural
data to teach a robot? In this paper, we adopt the And-Or-
Graph (AOG) [8] to represent the structure of knowledge in
the virtual world and transfer to the physical world. Second,
how realistic the virtual world needs to be to afford a positive
knowledge transfer and robot execution in the physical
world? Here, we study the efficiency of knowledge transfer
by comparing different levels of realism in the simulations
of virtual environments and the types of interactions.

Our contributions, also summarized in Fig. 1, are three-
fold: (i) We model both the virtual world and the physical
world from a probabilistic perspective and represent the
two worlds’ differences as the relative entropy defined on a
graph-based representation. (ii) We adopt the AOG grammar
model as the knowledge representation and demonstrate its
efficacy during the task transfer. (iii) We develop a virtual
environment with scene-level discrete spaces for the task of
folding clothes. Two crucial factors (i.e., the realism of the
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Fig. 1: Overview of the proposed framework for learning abstract
knowledge for robot task transfer. (a) Using the Oculus headset and
Touch controller, (b) a subject can demonstrate a sequence for the
task of clothes folding in a physically realistic VR environment. Our
algorithm is able to (c) induce a hierarchical graph-based knowledge
representation based on human demonstrations, and (d) transfer it
to a physical Baxter robot for execution by minimizing the entropy.

simulations, and the levels of interactions) that could affect
the knowledge transfer are thoroughly evaluated.

II. RELATED WORK

A. Virtual Training and Sim2Real
Virtual Reality (VR) is ideal for virtual training due to

its capability to rapidly construct any types of environments
given specific parameters. In the physical world, such a
requirement could be difficult (or even infeasible) to con-
struct the apparatus or create various conditions with desired
parameters [9], [10], [11]. In this paper, we hope to transfer
the robot skill from human demonstrations using a real-time
cloth simulator with high realism [12] inside the VR, which
nicely combines the advantages of the natural and detailed
manipulation provided by VR with the needs for learning
robot skills of complex tasks from human demonstrations.

There has been an increasing interest in the field of
Sim2Real; it adopts the synthetic and simulated data to assist
the learning on a large scale and hopes to transfer the learned
models to the physical world. In general, Sim2Real can be
categorized into three different strategies: domain adapta-
tion [13], [14], [15], system identification [16], and domain
randomization [17]. This paper’s focus is perpendicular to the
prior literature; we emphasize how to build the hierarchical
knowledge representation from human demonstration and
verify whether such an abstract knowledge would facilitate
the positive task transfer.



B. VR for Robotic Tasks

The Artificial Intelligence (AI) community has recently
witnessed a trend that shifts towards so-called “embodied
AI,” wherein the goal is to empower a virtual agent to
learn through interacting inside virtual environments. This
direction is in stark contrast with the common trend that
learns from static image datasets. In this paper, we take a
similar stance for virtual agents; however, instead of letting
the virtual agents unsupervisedly explore the environment,
we emphasize what the agent could learn from human
demonstrations and what kind of knowledge representation
would help the knowledge transfer to the physical world.
To ensure the collection of high-quality data in virtual
environment, both state-of-the-art hardware [18], [19] and
software [4], [20] systems are adopted.

III. PROBLEM FORMULATION

A. Probabilistic World Model

Let WV denote the virtual world, WP the physical world,
OV a single virtual object, OP a single physical object.
Assuming numpOV q“ numpOP q (i.e., an equal number of
objects in both the virtual and physical worlds), the world
model is defined as

#

WV “
ŤnumpOV

q

i“1 OV

WP “
ŤnumpOP

q

i“1 OP
. (1)

Let tX1, ..., Xnu denote objects attributes, and assume that
any object can be described as a mixture of these attributes

#

OV “ pO
V

pX1, ..., Xnq

OP “ pO
P

pX1, ..., Xnq
, (2)

where pO
V

and pO
P

denote the probabilistic distribution of
the virtual and the physical object, respectively. Assuming
each object’s attributes are independent of each other, the
virtual and the physical world can be defined as

#

pW
V

pWV q“
śnumpOV

q

i“1 pO
V

i pX1, ..., Xnq

pW
P

pWP q“
śnumpOP

q

i“1 pO
P

i pX1, ..., Xnq
. (3)

We adopt relative entropy measured by the KL diver-
gence [21] to represent the difference between the virtual and
the physical world. The relative entropy between pW

P

pWP q

and pW
V

pWV q is denoted as DppWP

pWP q||pW
V

pWV qq.
Since D is always larger or equal to zero, we have

mintDppW
P

pWP
q||pW

V

pWV
qqu

“mint

numpOV q
ÿ

i“1

DppO
P

i pX1, ..., Xnq||p
OV

i pX1, ..., Xnqqu,
(4)

i.e., the measurement of the similarity between the virtual
and the physical world is equivalent to the measurement of
the similarity among a set of virtual and physical objects.

We can further decompose the attributes into two sets:
a task-related set tX1, ..., Xku and a task-unrelated set
tXk`1, ..., Xnu, so we have

DppOP

i pX1, ..., Xnq||p
OV

i pX1, ..., Xnqq“DppOP

i pX1, ..., Xkq||p
OV

i pX1, ..., Xkqq, (5)

where the set of task-unrelated attributes is discarded. By
such a simple derivation, our goal is to find a suitable
probabilistic distribution of a given virtual object in order
to minimize the relative entropy of pO

V

and pO
P

in the
physical world regarding the task-related set of attributes

p̂O
V

“ arg min
pOV

DppO
P

pX1, ..., Xkq||p
OV

pX1, ..., Xkqq. (6)

B. Graph-based Knowledge for Task Transfer
A good knowledge representation should be able to mea-

sure and explain the difference between the virtual and the
physical world so that the knowledge transfer between the
two worlds is realizable. In this paper, we choose the a
specific type of probabilistic graphical model [22], AOG,
due to its transparency [23], expressiveness of knowledge
representation [24], and ability of contextual adaptation [25].

Let G denotes the learned graph-based knowledge from the
virtual world and K the knowledge error transfer function
(KETF) between the virtual and the physical world

K “DppG
P

pGq||pG
V

pGqq“ E
pGP

log
pG

P

pGq
pGV

pGq
. (7)

An AOG G could be induced by a set of “sentences” or
instances of a given task, either by object entities and their
relations [26], [27], [28], [29], [30], action sequences [31],
[32], [33], [34], [35], [23], [36], causal relation [37], [38],
[39], [40], or jointly [41]. By setting the “Or” nodes of an
AOG, a parse graph is a sampled to provide a deterministic
description of the given implementation of a task. Let pg
denote a parse graph of the current state of the world W
and pppg|W q its probabilistic distribution

ppGq“
numppgq

ź

i“1

ppppgi|W qppW qq. (8)

Substituting Eq. (8) into Eq. (7), we have

K “ E
pGP

log

śnumppgq
i“1 ppG

P

ppgi|W
P qpG

P

pWP qq
śnumppgq
i“1 ppGV

ppgi|WV qpGV
pWV qq

, (9)

where pG
P

ppgi|W
P q{pG

V

ppgi|W
V q“ 1 since pg will not be

affected by the pixel-level difference between the virtual and
the physical world. Hence, the equation can be simplified to

K “ E
pGP

logp
pG

P

pWP q

pGV
pWV q

qnumppgq“ numppgq E
pGP

logp
pG

P

pWP q

pGV
pWV q

q, (10)

where numppgq is the total number of parse graphs. Note
that the virtual and the physical world share the same pg
due to their common logical structure of tasks, but they
are grounded to different observations (in terms of pixels).
The above equation is in accord with the intuition: When
pG

V

pWV q gets close to pG
P

pWP q, K will be decreased
simultaneously; the lower the value of KETF is, the higher
the knowledge transfer rate is. Taking Eq. (6) and Eq. (10)
together, we can see that increasing the similarity between
the attributes of the virtual objects and the attributes of
the physical objects will decrease the error of transferred
knowledge between the two worlds; this is also well aligned
and consistent with our intuition.
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Fig. 2: Illustration of the knowledge representation by an STC-And-Or-Graph (AOG) [8]. A parse or an instance of an AOG is termed as a
parse graph (pg). Spatial-pg (S-pg) models the entities and their relations in the scene, Temporal-pg (T-pg) represents the action sequence,
and Causal-pg (C-pg) extracts the perceived causality from the human demonstrations. In this example, the probability p5 determines the
order of the sub-tasks, whereas p1, ¨ ¨ ¨ , p4 denote the probability of node to be executed.

IV. BI-LEVEL HIERARCHICAL AOG LEARNING

Every task encodes two levels of knowledge: A low-level
execution layer that carries out the high-level abstract logic
layer. The high-level abstract knowledge oversees “what to
do,” and the low-level execution details govern “how to do.”
We introduce a bi-level learning scheme defined on AOG.

A. High-Level: AOG Learning

1) AOG as an image grammar: An AOG is defined
as G“tV,R,Pu, where V “VAndYVOrYVTerminal consists
of a disjoint set of And-nodes, Or-nodes, and Terminal-
nodes. An And-node is the decomposition of a large entity,
indicating all of its child nodes should exist simultaneously.
An Or-node is a branching choice; its child nodes can exist
only one in a given implementation of a task. A terminal node
denotes a specific physical element (for S-AOG), action (for
T-AOG), or logic (for C-AOG). R is the production rule,
representing a set of contextual relations among the nodes
in V . P denotes the probabilities for elements in R.

2) Spatial, Temporal, and Causal AOG: A spatial AOG
(S-AOG) is a representation of the spatial distribution of
every object and the compositional relations of their parts. A
temporal AOG (T-AOG) is a representation of actions in a
temporal order. A causal AOG (C-AOG) is a representation
of the perceived causality, derived from S-AOG and T-AOG.

3) Grammar Learning and Prediction: An AOG can be
induced using grammar induction based on observational
signals [42], [31]. Given a learned grammar and a partially
observed sequence, one can further predict the next STC-
unit [32] using certain language parsers, e.g., an Earley parser
in NLTK [43]. A learned AOG is shown in Fig. 2.

4) Parameters Learning: After the induction of semantics
and syntax, the algorithm also needs to estimate the parame-
ters to assign probabilities of edges between any nodes, i.e.,
the weight/likelihood of an Or-node to choose a branch. Each
observed task execution sequence corresponds to a specific
parse graph. Intuitively, the frequency of a node in the entire
observed data would indicate the node’s probability given its
parent node, which can be formulated as an MLE.

Formally, let v denote a child node of an Or-node in an
AOG, vi the ith possible value of this child node, ppvÑ viq
the probability that v appears with the ith value vi, defined by
ppvÑ viq“

#pvÑviq
řnumpvq

j“1 #pvÑvjq
, where #pvÑ viq denotes the

frequency that v appears with the ith value vi, and numpvq
is the total number of the possible values of node v.

B. Low-level: Atomic Action Learning
The atomic action refers to an action that cannot be further

decomposed as the robot manipulation action. Two crucial
ingredients are needed to learn the optimal trajectory so that
each atomic action can be easily transferred from the source
trajectory performed in the virtual environment to the target
trajectory in the physical world: a scale parameter and critical
points along the estimated trajectory.

1) Scale Parameter: The entire 3D trajectories of all
atomic actions performed in human demonstrations are
recorded. Let TV denote the recorded trajectory in the virtual
world for a given task, and TP the target trajectory to
perform in the physical world, we have

#

TV “tqV,s,qV,e,Y
numpqV,t

q

i“1 qV,ti u

TP “tqP,s,qP,eend,Y
numpqP,t

q

i“1 qP,ti u
, (11)

where qV,s and qV,e are the start/end point of the virtual
trajectory, respectively, and qV,ti a point on the virtual
trajectory excluding the start/end point; qP,s, qe, and qP,ti
are the corresponding variables in the physical world.

We first estimate the projection of the scale vector to
compare the trajectories on the plane (e.g., a tabletop).
Let qV,scale“qV,e´qV,s denote the scale vector of the
trajectory in the virtual world, and qP,scale“qP,e´qP,s

the scale vector in the physical world. Let nV be the unit
vector of the projection for qV,scale, so that the projec-
tion length of qV,scale is LV,Proj “qV,scale ¨nV . Similarly,
the projection length of qP,scale in the physical world is
LP,Proj “qP,scale ¨nP . The scale parameter θ between the
trajectories in the two worlds is then given by the ratio

θ“
LP,Proj

LV,Proj
. (12)
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Fig. 3: Trajectory analysis using Gaussian fitting. Given a human
demonstration of cloth-folding sequences in terms of (a) grasp
points and (b) trajectories, our algorithm aggregates the raw data
and fits the (c) start points and (d) end points with a Gaussian
distribution; (e) folding trajectories are further estimated.

2) Trajectory Interpolation: Since recorded trajectories in
human demonstrations may contain different numbers of 3D
points, the algorithm needs to interpolate the trajectory so
that the recorded trajectories share the same structure.

Let tq1V,starti u denote the set of recorded start points
projected onto a 2D plane, tq1V,endi u the set of end points
projected onto a 2D plane (Fig. 3a), and tTVi u the recorded
trajectories (Fig. 3b). We assume the 2D position of the grasp
point on the plane follows a Gaussian distribution

ppq1
V,start

q“ 1

2π
?
|Σ|

expp´ 1
2 pq

1V,start´µV,startqTΣ´1pq1
V,start

´µV,startqq, (13)

where q1
V,end shares the same form of Gaussian distribution

as q1
V,start; see examples in Figs. 3c and 3d.

Let numpTVi q denote the number of points in the trajectory
TVi , including the start and end points, ni“ numpTVi q the
length of a trajectory, and nmax“maxpnumpTVi qq the length
of the longest trajectory. We interpolate points in every
trajectory so that the total number of points is equal to
nmax; i.e., for TVi , the number of points to be added is
nmax´ni. Specifically, we procedurally add points to TVi
by the following steps: (i) Find two neighboring points qj
and qj`1 that have the largest distance. (ii) Insert qins“
1{2pqj`qj`1q between qj and qj`1. (iii) Loop (i) and (ii)
for nmax´ni times and update TVi .

3) Trajectory Estimation: We approximate the optimal
trajectory by combining interpolated trajectories

ppTVi q“
1
2 pppq

1V,start
i ´µV,startq`ppq1

V,end
i ´µV,endqq. (14)

The approximated trajectory is given by

T̂ “

numpTV
i q

ÿ

i“1

ωiT
V
i , where ωi“

ppTVi q
řnumpTV

i q

i“1 ppTVi q
. (15)

Fig. 3b visualizes an example of the estimated trajectory.
Based on Eqs. (12) and (15), the trajectory in the physical
world could be approximated by

T̂P “ θT̂V . (16)
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Fig. 4: Six virtual environments with different fidelity for learning
and evaluating the knowledge of folding clothes. (a) Grasp areas are
recorded. (b) Grasp point is visible and recorded. (c) Full physics-
based simulation but with only grasp points recorded. (d) Grasp
point is recorded but the trajectory is the pre-defined line. (e) Grasp
point is recorded but the trajectory is estimated. (f) Full physics-
based simulation with the complete trajectory recorded.

V. EXPERIMENTS1

A. Hypothesis Space

We consider two factors that would affect the knowledge
transfer between the virtual and the physical world: (i) The
realism of the simulated physics of the virtual environment,
α, where 0ďαď 1. (ii) The realism of the interaction inside
the virtual environment, β, where 0ďβď 1. An intuitive
expectation would be: the virtual environment with low
fidelity (α and β close to 0) would result in a high knowledge
transfer error; conversely, the virtual environment in high
fidelity leads to a low knowledge transfer error.

B. Hardware and Software

1) System Setup: We build the system based on the
Oculus Rift CV1, capable of capturing the human’s head
and hands’ positions and poses. We further use the Oculus
Touch controllers as the interface for human subjects to
demonstrate cloth folding in the virtual world. During the
evaluation, a physical Baxter robot is deployed to evaluate
folding clothes’ performance in the physical world. Our
system is implemented on a desktop with an Intel i7-7700K
CPU and an NVIDIA GeForce GTX 1070Ti Graphics Card.

2) Construction of Virtual Environments: We construct
six different virtual scenes of clothes-folding tasks with
different fidelity in Unity3D and Unreal Engine 4; see Fig. 4.
Table I lists the detailed configurations for every scene and
the supported features (i.e., grasp point, and trajectory). For
each virtual scene, we collect 30 sequences of trials. Every
sequence includes the full 3D data of human demonstrations.

TABLE I: Configurations of constructed virtual scenes. “Phy.”:
physics. “Int.”: interaction. “Pre.”: the trajectory is pre-defined
regardless of how the grasp points are distributed. “Est.” trajectory
is estimated by the spatial distribution of grasp points.

Scene Description Fidelity Level Data Feature
(3 ˆ Phy. and 2 ˆ Int.) Physics Interaction Procedure Grasp Point Trajectory
A. Low-Phy. & Low-Int. α1 β1

‘

ˆ ˆ

B. Median-Phy. & Low-Int. α2 β1
‘ ‘

ˆ

C. High-Phy. & Low-Int. α3 β1
‘ ‘

ˆ

D. Low-Phy. & High-Int. α1 β2
‘ ‘ ‘

pPre.q
E. Median-Phy. & High-Int. α2 β2

‘ ‘ ‘

pEst.q
F. High-Phy. & High-Int. α3 β2

‘ ‘ ‘

1Preliminary results have been reported as an extended abstract [44].
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Fig. 5: Visualization of the learned knowledge represented by AOGs in six different scenes with various fidelity of physics and interaction.
The horizontal axis is the fidelity of interaction, and the vertical axis is the fidelity of physics. In every block parameterized by α and
β, the left column is the induced C-AOG based on the observed data, and the number next to an edge is the branching probability. The
middle column is the grasp point collected in virtual scenes. The right column is the final knowledge of atomic actions.
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Fig. 6: The transformation of coordinate systems between the
physical environment and the virtual environment. (a) Top view of
the physical environment. (b) Top view of the virtual environment.
θ denotes the scale mapping between the two. (c) The world
coordinate system is highlighted by green balls. (d) The plane with
a chessboard pattern determines the world coordinate system.

C. Evaluation Protocol

1) Subjects: 14 graduate students (7 males and 7 females;
ages: 20–28) at UCLA were recruited in a within-subject
design. All the subjects do not have similar VR experiences.
They are asked to rank the results according to how well the
clothes were folded. A better folding result corresponds to
a higher score. The final mean score across the six scenes
would serve as a reliable indicator of the human utility
regarding the states of clothes, showing the extent to which
the knowledge has been successfully transferred.

2) Evaluation of Knowledge Transfer: We compute six
AOG-based knowledge representation to evaluate how differ-
ent fidelity affects the learning results. Intuitively, the more
complete the information provided, the better knowledge
can be learned, and the higher the knowledge transfer rate
is. The intuition of knowledge transfer is verified on a
physical Baxter robot platform. Fig. 6 illustrates an example
of coordinate transfer on “Scene F.”

3) Evaluation of Knowledge Generalization: We test the
learned knowledge with new examples of clothes to evaluate
the model generalization. Specifically, we adopt 3 different
categories of clothes (i.e., trousers, shorts, and dress). The
evaluation criteria are based on (i) the final state of the
clothes and (ii) the sequence of actions.

𝛼1 & 𝛽1 𝛼1 & 𝛽2 𝛼2 & 𝛽1
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Fig. 7: Results of folding physical clothes using the learned knowl-
edge. (a) Examples of the executions by a physical Baxter robot
based on the learned knowledge from virtual scenes. (b) Human
subject rating of the robot performance.

D. Results

1) Visualization of Extracted Knowledge: Section IV-A
shows qualitative results, wherein the left column of every
block includes the learned C-AOG and its parameters, the
middle column shows the grasp points, the right column
visualizes the learned atomic actions. Specifically,
‚ Scene A (α1 and β1): as we can only obtain the folding

actions by triggering animations, the learned knowledge is
only the manipulation area without any grasp point.

‚ Scene B ( α2 and β1): the learned knowledge is the
estimated geometrical center of every point cluster.

‚ Scene C (α3 and β1): similar to Scene B, we can use the
collected grasp points to estimate the geometrical center.

‚ Scene D (α1 and β2): we obtain both grasp points and
folding actions by folding logic encoded in the animation.

‚ Scene E (α2 and β2): both grasp points and the estimated
straight lines for folding actions are obtained.

‚ Scene F (α3 and β2): both grasp points and the complete
trajectories are recorded.
2) Factors in Knowledge Transfer: We apply the learned

knowledge from virtual environments to a physical robot
to evaluate knowledge transfer; see an example in Fig. 7a.
The robot executions are recorded and presented to human
subjects for ratings; the scores are summarized in Fig. 7b.
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Fig. 8: Utility landscape of folding clothes based on human subject
ratings. (a) The fitted mesh based on the ranking results of users,
which shows the basic landscape of human utility. (b) Fixing the
realism of the interaction (β), the mean score varies with the realism
of the physics. (c) Fixing the realism of the physics (α), the mean
score varies with the realism of the interaction.

A Wilcoxon test is conducted to identify whether different
values of β (realism of interaction) significantly affect the
ranking score of human subjects, when the value of α (real-
ism of physics) is fixed. The test results indicate that there
indeed exists a significant difference between the ranking
scores for Group A and Group D (Z “ 3.359, pă .001) when
α“α1, Group B and Group E (Z “ 3.336, pă .05) when
α“α2, and Group C and Group F (Z “ 3.556, pă .05) when
α“α3. On average, Group D is better than Group A, Group
E better than Group B, and Group F better than Group C.
Such results show the realism of interaction will benefit the
knowledge learning rate regardless of the realism of physics.

A Friedman test is performed to identify whether different
values of α (realism of physics) significantly affect the
ranking score of human subjects, when the value of β
(realism of interaction) is fixed. The test results indicates that
there is no significant difference among the ranking scores
(χ2p2, N “ 14q“ .571, p“ .751) when β“β1. But there is a
significant difference among the ranking scores (χ2p2, N “
14q“ 24.571, pă .001) when β“β2. Such a result reveals
that Group A, B, and C do not show any statistical difference;
i.e., the realism of physics will not affect the knowledge
learning when β“β1.

We further conduct the Wilcoxon test to identify whether
different values of α (realism of physics) significantly affect
the ranking score of human subjects, when the value of β
(realism of interaction) is fixed. The results indicate there
are significant differences between the ranking scores for
Group D and Group E (Z “ 2.673, pă 0.01), Group E and
Group F (Z “ 3.557, pă 0.001), and Group D and Group
F (Z “ 3.557, pă 0.001). Such an analysis shows that the
realism of physics can have a positive correlation with the
knowledge learning rate when β“β2.

We fit a utility landscape based on collected human data,
reflecting the trend of human utility regarding two fidelity
factors of the cloth-folding task; see Fig. 8a. We also
visualize the effect of each factor when another factor is
fixed; see Figs. 8b and 8c. The results are consistent with
the derivation discussed in Section III.

3) Knowledge Generalization: We test the knowledge
generalization/transfer with a new set of clothes, as shown in
the first column of Fig. 9. Specifically, the robot is asked to
fold the clothes with an action sequence so that the clothes’
size becomes smaller in time. The learned high-level logic

Fig. 9: Knowledge generalization/transfer of folding various unseen
clothes. The red balls indicate virtual fingers.
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Fig. 10: Two evaluation criteria for folding clothes. (a) The size of
clothes becomes smaller when the folding action sequences unfold.
(b) Actions taken in a given sequence for different folding tasks.

guides the robot to determine the task planner to shrink the
size of clothes, and the low-level atomic actions shepherd
the robot to find appropriate grasping points and action
trajectories. We evaluate the knowledge generalization based
on two evaluation criteria: the size of clothes and the folding
action sequence; see Fig. 10.

VI. CONCLUSION AND DISCUSSION

In this paper, we demonstrate that the AOG-based knowl-
edge representation could help eliminate the gap between
the virtual and the physical world. The information entropy
provides a new perspective to measure the similarity between
the virtual and the physical world. In experiments, we
also demonstrate that decreasing the difference between the
virtual and the physical world along the crucial dimension
(e.g., the realism of physics and interaction) will improve the
knowledge transfer rate. We further analyze how the different
factors could affect the knowledge transfer rate, indicating
that both the realism of the physics and the interaction have
a positive correlation with the knowledge transfer rate.

Some limitations are to be addressed. (i) We rely on
the off-the-shelf robotic packages to handle the control
details, which could be another crucial factor that affects
the knowledge transfer rate. (ii) The current state-of-the-art
cloth simulation with real-time interaction still has limited
effects; one major issue is the self-penetration, which could
affect human demonstrations and subject rating. We hope a
better real-time simulator would help in the near future.
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